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1. Semiconductor Physics 
 

1.1 Metals, Semiconductors, and Insulators 

Every solid has its own characteristic energy band structure. This variation in band 

structure is responsible for the wide range of electrical characteristics observed in various 

materials. The diamond band structure for example, can give a good picture of why 

carbon in the diamond lattice is a good insulator. To reach such a conclusion, we must 

consider the properties of completely filled and completely empty energy bands in the 

current conduction process. 

Before discussing the mechanisms of current flow in solids further, we can 

observe here that for electrons to experience acceleration in an applied electric field, they 

must be able to move into new energy states. This implies there must be empty states 

(allowed energy states which are not already occupied by electrons) available to the 

electrons. For example, if relatively few electrons reside in an otherwise empty band, 

ample unoccupied states are available into which the electrons can move. On the other 

hand, the diamond structure is such that the valence band is completely filled with 

electrons at 0 K  and the conduction band is empty. There can be no charge transport 

within the valence band, since no empty states are available into which electrons can 

move. There are no electrons in the conduction band, so no charge transport can take 

place there either. Thus carbon in the diamond structure has a high resistivity typical of 

insulators. 

    Semiconductor materials at 0 K  have basically the same structure as 

insulators-a filled valence band separated from an empty conduction band by a band gap 

containing no allowed energy states (Figure 1.1). The difference lies in the size of the 

band gap gE  which is much smaller in semiconductors than in insulators. For example, 

the semiconductor Si  has a band gap of about 1.1 eV  compared with 5 eV  for diamond. 

The relatively small band gaps of semiconductors allow for excitation of electrons from 

the lower (valence) band to the upper (conduction) band by reasonable amounts of 

thermal or optical energy.  
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For example, at room temperature a semiconductor with a 1 eV   band gap will have a 

significant number of electrons excited thermally across the energy gap into the 

conduction band whereas an insulator with 10gE eV  will have a negligible number of 

such excitations. Thus an important difference between semiconductors and insulators is 

that the number of electrons available for conduction can be increased greatly in 

semiconductors by thermal or optical energy. 

 In metals the bands either overlap or are only partially filled. Thus electrons and 

empty energy states are intermixed within the bands so that electrons can move freely 

under the influence of an electric field. As expected from the metallic band structures, 

metals have a high electrical conductivity. 

 

 

 

 

 

 

 

 

 

1.2 Direct and Indirect Semiconductors 

When quantitative calculations are made of band structures, a single electron is assumed 

to travel through a perfectly periodic lattice. The wave function of the electron is 

assumed to be in the form of a plane wave moving, for example, in the x -direction with 

propagation constant k , also called a wave vector. The space-dependent wave function 

for the electron is 

    , xik x
k xx U k x e   

where the function  ,xU k x   modulates the wave function according to the periodicity of 

the lattice. 

gE

Empty

Empty

filledPartially 

              
              
              
              
              
              

Filled

              
              
              
              

Filled
              
              
              
              

Filled

              
              
              
              

              
              
              
              

goverlappin

gE

Insulator Semiconductor Metal Figure 1.1: 

http://www.physicsbyfiziks.com
mailto:fiziks.physics@gmail.com


fiziks 
Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics 

 

H.No. 40-D, Ground Floor, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016 
Phone: 011-26865455/+91-9871145498 

Website: www.physicsbyfiziks.com  | Email: fiziks.physics@gmail.com  
3 

 

In such a calculation, allowed values of energy can be plotted vs. the propagation 

constant k . Since the periodicity of most lattices is different in various directions, the 

 ,E k diagram must be plotted for the various crystal directions and the full relationship 

between E  and k  is a complex surface which should be visualized in three dimensions. 

                                                            The band structure of GaAs  has a minimum in the 

conduction band and a maximum in the valence band for the same k  value  0k  . On 

the other hand, Si  has its valence band maximum at a different value of k  than its 

conduction band minimum. Thus an electron making a smallest-energy transition from 

the conduction band to the valence band in GaAs  can do so without a change in k  value; 

on the other hand a transition from the minimum point in the Si  conduction band to the 

maximum point of the valence band requires some change in k . Thus there are two 

classes of semiconductor energy bands direct and indirect (Figure 1.2). We can show that 

an indirect transition involving a change in k  requires a change of momentum for the 

electron. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Direct and indirect electron transitions in semiconductors: (a) direct 

transition with accompanying photon emission; (b) indirect transition via a defect level. 
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In a direct semiconductor such as GaAs , an electron in the conduction band can fall to an 

empty state in the valence band, giving off the energy difference gE  as a photon of light. 

On the other hand, an electron in the conduction band minimum of an indirect 

semiconductor such as Si  cannot fall directly to the valence band maximum but must 

undergo a momentum change as well as changing its energy. For example, it may go 

through some defect state  tE  within the band gap. In an indirect transition which 

involves a change in k , the energy is generally given up as heat to the lattice rather than 

as an emitted photon. This difference between direct and indirect band structures is very 

important for deciding which semiconductors can be used in devices requiring light 

output. For example, semiconductor light emitters and lasers generally must be made of 

materials capable of direct band-to-band transitions or of indirect materials with vertical 

transitions between defect states. 

1.3 Electrons and Holes 

As the temperature of a semiconductor is raised from 0 K , some electrons in the valence 

band receive enough thermal energy to be excited across the band gap to the conduction 

band. The result is a material with some electrons in an otherwise empty conduction band 

and some unoccupied states in an otherwise filled valence band (Figure 1.3). For 

convenience, an empty state in the valence band is referred to as a hole. If the conduction 

band electron and the hole are created by the excitation of a valence band electron to the 

conduction band, they are called an electron-hole pair (abbreviated EHP). 

 

 

 

 

 

 

 

Figure 1.3: Electron-hole pairs in a semiconductor. 
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After excitation to the conduction band, an electron is surrounded by a large number of 

unoccupied energy states. For example, the equilibrium number of electron-hole pairs in 

pure Si  at room temperature is only about 10 310 /EHP cm , compared to the Si  atom 

density of more than 22 310 /atoms cm . Thus the few electrons in the conduction band are 

free to move about via the many available empty states. 

1.3.1 Effective Mass 

The electrons in a crystal are not completely free, but instead interact with the periodic 

potential of the lattice. As a result, their “wave-particle” motion can-not be expected to be 

the same as for electrons in free space. Thus, in applying the usual equations of 

electrodynamics to charge carriers in a solid, we must use altered values of particle mass. 

In doing so, we account for most of the influences of the lattice, so that the electrons and 

holes can be treated as “almost free” carriers in most computations. The calculation of 

effective mass must take into account the shape of the energy bands in three-dimensional 

k -space, taking appropriate averages over the various energy bands. 

Example: Find the  ,E k  relationship for a free electron and relate it to the electron 

mass. 

Solution:  

The electron momentum is p mv k   . Then 

                      
2 2

2 21 1
2 2 2

pE mv k
m m

  
    

Thus the electron energy is parabolic with wave vector k .  

The electron mass is inversely related to the curvature (second derivative) of the  ,E k  

relationship, since                   mdk
Ed 2

2

2 
 . 

Although electrons in solids are not free, most energy bands are close to parabolic at their 

minima (for conduction bands) or maxima (for valence bands). We can also approximate 

effective mass near those band extrema from the curvature of the band. 

 

k

E
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The effective mass of an electron in a band with a given  ,E k  relationship is given by 

    
2

2 2*
/

m
d E dk


     

A particularly interesting feature is that the curvature 2 2/d E dk is positive at the 

conduction band minima, and is negative at the valence band maxima. Thus, the electrons 

near the top of the valence band have negative effective mass. Valence band electrons 

with negative charge and negative mass move in an electric field in the same direction as 

holes with positive charge and positive mass. We can fully account for charge transport 

in the valence band by considering hole motion. 

 

In any calculation involving the mass of the charge carriers, we must use effective mass 

values for the particular material involved. Table given below lists the effective masses 

for Ge , Si , and GaAs  appropriate for one type of calculation. In this table and in all 

subsequent discussions, the electron effective mass is denoted by *
nm  and the hole 

effective mass by *
pm . The n  subscript indicates the electron as a negative charge carrier, 

and the p  subscript indicates the hole as a positive charge carrier (The free electron rest 

mass is 0m ). 

     Ge     Si    GaAs 

 *
nm   0.55 0m    1.1 0m     0.067 0m   

 
*
pm   0.37 0m              0.56 0m        0.48 0m    
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1.4 Intrinsic Material 

A perfect semiconductor crystal with no impurities or lattice defects is called an intrinsic 

semiconductor. In such material there are no charge carriers at 0 K , since the valence 

band is filled with electrons and the conduction band is empty. At higher temperatures 

electron-hole pairs are generated as valence band electrons are excited thermally across 

the band gap to the conduction band. These EHPs are the only charge carriers in intrinsic 

material. 

The generation of EHPs can be visualized in a qualitative way by considering the 

breaking of covalent bonds in the crystal lattice. If one of the Si  valence electrons is 

broken away from its position in the bonding structure such that it becomes free to move 

about in the lattice, a conduction electron is created and a broken bond (hole) is left 

behind. The energy required to break the bond is the band gap energy gE . This model 

helps in visualizing the physical mechanism of EHP creation, but the energy band mode 

is more productive for purposes of quantitative calculation. One Important difficulty in 

the “broken bond” model is that the free electron and the hole seem deceptively localized 

in the lattice. Actually, the positions of the free electron and the hole are spread out over 

several lattice spacing and should be considered quantum mechanically by probability 

distributions.  

 

 

 

 

 

 

 

 

Figure 1.4: Electron-hole pairs in the covalent bonding model of the Si crystal. 
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Since the electrons and holes are created in pairs, the conduction band electron 

concentration n (electrons per cm3) is equal to the concentration of holes in the valence 

band p  (holes per cm3). Each of these intrinsic carrier concentrations is commonly 

referred to as in . Thus for intrinsic material       

                                                          inpn  .  

At a given temperature there is a certain concentration of electron-hole pairs in . 

Obviously, if a steady state carrier concentration is maintained, there must be 

recombination of EHPs at the same rate at which they are generated. Recombination 

occurs when an electron in the conduction band makes a transition (direct or indirect) to 

an empty state (hole) in the valence band, thus annihilating the pair. If we denote the 

generation rate of EHPs as ig , (EHP/cm3) and the recombination rate as ir  , equilibrium 

requires that:           i ir g        

Each of these rates is temperature dependent. For example,  ig T  increases when the 

temperature is raised, and a new carrier concentration in , is established such that the 

higher recombination rate  ir T just balances generation. At any temperature, we can 

predict that the rate of recombination of electrons and holes ir  is proportional to the 

equilibrium concentration of electrons 0n  and the concentration of holes 0p   

    2
0 0i r r i ir n p n g        

The factor r  is a constant of proportionality which depends on the particular mechanism 

by which recombination takes place.  
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1.5 Extrinsic Material 

In addition to the intrinsic carriers generated thermally, it is possible to create carriers in 

semiconductor purposely by introducing impurities into the crystal. This process, called 

doping is the most common technique for varying the conductivity of semiconductors. By 

doping, a crystal can be altered so that it has a predominance of either electrons or holes. 

Thus there are two types of doped semiconductors, n-type (mostly electrons) and p-type 

(mostly holes). 

When impurities or lattice defects are introduced into an otherwise perfect crystal, 

additional levels are created in the energy band structure usually within the band gap. For 

example, an impurity from column V  of the periodic table (P, As, and Sb) introduces an 

energy level very near the conduction band in Ge or Si. This level is filled with electrons 

at 0 K , and very little thermal energy is required to excite these electrons to the 

conduction band. Thus at about 50 100K K  virtually all of the electrons in the impurity 

level are “donated” to the conduction band. Such an impurity level is called a donor level 

and the column V impurities in Ge or Si are called donor impurities. From figure 1.5, we 

note that the material doped with donor impurities can have a considerable concentration 

of electrons in the conduction band, even when the temperature is too low for the intrinsic 

EHP concentration to be appreciable. Thus semiconductors doped with a significant 

number of donor atoms will have ),( 00 pnn i  at room temperature. This is n-type 

material. 

 

 

 

 

 

 

 

Figure 1.5: Donation of electrons from a donor level to the conduction band. 
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Atoms from column III (B, Al, Ga, and In) introduce impurity levels in Ge or Si near the 

valence band. These levels are empty of electrons at 0 K .  At low temperatures, enough 

thermal energy is available to excite electrons from the valence band into the impurity 

level, leaving behind holes in the valence band, since this type of impurity level “accepts” 

electrons from the valence band, it is called an acceptor level, and the column III 

impurities are acceptor impurities in Ge and Si. Figure 1.6 indicates, doping with acceptor 

impurities can create a semiconductor with a hole concentration 0p  much greater than the 

conduction band electron concentration 0n  (this is p-type material). 

  

 

 

 

 

 

 

Figure 1.6: Acceptance of valence band electrons by an acceptor level, and the resulting 

                    creation of holes. 
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1.6 The Fermi Level 

Electrons in solids obey Fermi-Dirac statistics. In the development of this type of 

statistics, one must consider the indistinguishability of the electrons, their wave nature, 

and the Pauli Exclusion Principle. The rather simple result of these statistical arguments 

is that the distribution of electrons over a range of allowed energy levels at thermal 

equilibrium is:         
1

1 FE E kTf E
e 




     

where k  is Boltzmann constant. The function  f E , the Fermi-Dirac distribution 

function, gives the probability that an available energy state at E will be occupied by an 

electron at absolute temperature T. The quantity EF is called the Fermi Level, and it 

represents an important quantity in the analysis of semiconductor behavior. We notice 

that, for an energy E equal to the Fermi level energy EF , the occupation probability is                   

                                      1/ 1 11
1 1 2

F FE E kT
Ff E e

      
. 

A closer examination of  f E indicates that at 0 K  the distribution takes the simple 

rectangular form shown in figure 1.7. With T = 0 in the denominator of the exponent, 

 f E  is 1/(1 + 0) = 1 when the exponent is negative (E < EF), and is 1/ (1 + ∞) = 0 when 

the exponent is positive (E > EF). This rectangular distribution implies that at 0 K  every 

available energy state up to EF is filled with electrons and all states above EF are empty. 

 

 

 

 

 

 

 

Figure 1.7: The Fermi Dirac distribution function. 
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At temperatures higher than 0 K , some probability exists for states above FE  to be filled. 

For example, at 1T T  there is some probability  f E  that states above FE are filled, 

and there is a corresponding probability  1 f E    that states below EF are empty.  

                                   The Fermi function is symmetrical about EF for all temperatures; 

that is the probability  Ff E E  that a state E  above FE  is filled is the same as the 

probability  1 Ff E E      that a state ∆E below EF is empty. The symmetry of the 

distribution of empty and filled states about EF makes the Fermi level a natural reference 

point in calculations of electron and hole concentrations in semiconductors. 

For intrinsic material we know that the concentration of holes in the valence band is 

equal to the concentration of electrons in the conduction band. Therefore, the Fermi level 

EF must lie at the middle of the band gap in intrinsic material [Figure 1.8a]. Since  f E  

is symmetrical about FE , the electron probability "tail" of  f E extending into the 

conduction band is symmetrical with the hole probability tail  1 f E   in the valence 

band. The distribution function has values within the band gap between cE  and vE   but 

there are no energy states available, and no electron occupancy results from  f E in this 

range.  

In n-type material there is a high concentration of electrons in the conduction band 

compared with the hole concentration in the valence band. Thus in n-type material the 

distribution function  f E must lie above its intrinsic position on the energy scale (figure 

1.8 b). Since  f E retains its shape for a particular temperature, the larger concentration 

of electrons at cE  in n-type material implies a correspondingly smaller hole concentration 

at vE . We notice that the value of  f E for each energy level in the conduction band (and 

therefore the total electron concentration 0n ) increases as FE  moves closer to cE . Thus 

the energy difference  c FE E   gives a measure of n . 

For p-type material the Fermi level lies near the valence band (figure 1.8 c) such that the  
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 1 f E    tail below vE  is larger than the  f E tail above cE . The value of  F vE E  

indicates how strongly p-type the material is. 

It is usually inconvenient to draw   .f E vs E  on every energy band diagram to indicate 

the electron and hole distributions. Therefore, it is common practice merely to indicate 

the position of EF in band diagrams.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: The Fermi distribution function applied to semiconductors: 

(a) Intrinsic material; (b) n-type material; (c) p-type material. 
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1.6.1 Electron and Hole Concentrations at Equilibrium 

The Fermi distribution function can be used to calculate the concentrations of electrons 

and holes in a semiconductor, if the densities of available states in the valence and 

conduction bands are known. For example, the concentration of electrons in the 

conduction band is 

    0
cE

n f E N E dE


     

where  N E dE  is the density of states (cm-3) in the energy range dE . The subscript 0 

used with the electron and hole concentration symbols ( 00 , pn ) indicates equilibrium 

conditions. The number of electrons per unit volume in the energy range dE  is the 

product of the density of states and the probability of occupancy  f E . Thus the total 

electron concentration is the integral over the entire conduction band. The 

function  N E can be calculated by using quantum mechanics and the Pauli Exclusion 

Principle. 

Since  N E is proportional to 1/ 2E , so the density of states in the conduction band 

increases with electron energy. On the other hand, the Fermi function becomes extremely 

small for large energies. The result is that the product    f E N E decreases rapidly 

above cE  and very few electrons occupy energy states far above the conduction band 

edge. Similarly, the probability of finding an empty state (hole) in the valence 

band  1 f E    decreases rapidly below vE  and most holes occupy states near the top of 

the valence band. This effect is demonstrated in figure 1.9, which shows the density of 

available states, the Fermi function, and the resulting number of electrons and holes 

occupying available energy states in the conduction and valence bands at thermal 

equilibrium (i.e., with no excitations except thermal energy). For holes, increasing energy 

points down, since the E scale refers to electron energy. 
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Figure 1.9: Schematic band diagram, density of states, Fermi-Dirac distribution, and the 

carrier concentrations for (a) intrinsic, (b) n-type, and (c) p-type semiconductors at  

thermal equilibrium. 
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The result of the integration of    0
cE

n f E N E dE


    is the same as that obtained if we 

represent the entire distributed electron states in the conduction band by an effective 

density of states cN  located at the conduction band edge cE . Therefore, the conduction 

band electron concentration is simply the effective density of states at cE  times the 

probability of occupancy at cE    

                     0 c cn f E N  

In this expression we assume the Fermi level FE  lies at least several kT below the 

conduction band. Then the exponential term is large compared with unity and the Fermi 

function  cf E  can be simplified as 

                    
  /

/

1
1

c F

c F

E E kT
c E E kTf E e

e
 


 


   

Since kT  at room temperature is only 0.026 eV , this is generally a good approximation. 

For this condition the concentration of electrons in the conduction  band is  

                     

 

 

The effective density of states
3/ 2*

2

22 n
c

m kTN
h

 
  

 
   

Thus electron concentration increases as FE  moves closer to the conduction band.  

By similar arguments, the concentration of holes in the valence band is  

                                                        0 1v vp N f E            

where cN  is the effective density of states in the valence band.  

The probability of finding an empty state at vE  is,    

             
  /

/

11 1
1

F v

v F

E E kT
v E E kTf E e

e
 

 
   


  for FE  larger than vE by several kT .  

 

  /
0

0

lnc FE E kT c
c c F

Nn N e E E kT
n

   
     

 
 

http://www.physicsbyfiziks.com
mailto:fiziks.physics@gmail.com


fiziks 
Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics 

 

H.No. 40-D, Ground Floor, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016 
Phone: 011-26865455/+91-9871145498 

Website: www.physicsbyfiziks.com  | Email: fiziks.physics@gmail.com  
17 

 

From these equations, the concentration of holes in the valence band is 

   .    

 

 

The effective density of states in the valence band
3/ 2*

2

2
2 p

v

m kT
N

h
 

   
 

 

Thus hole concentration increases as FE  moves closer to the valence band. 

The electron and hole concentrations predicted by above equations are valid whether the 

material is intrinsic or doped, provided thermal equilibrium is maintained.  

Thus for intrinsic material, FE  lies, at some intrinsic level iE  near the middle of the 

band gap, and the intrinsic electron and hole concentrations are 

      / /,c i i vE E kT E E kT
i c i vn N e p N e      

         

 

 

 

Note: The intrinsic level iE  is the middle of the band gap
2

g
c i

E
E E

 
  

 
, if the effective 

densities of states cN and cN  are equal. There is usually some difference in effective 

mass for electrons and holes, however, and cN and cN are slightly different.  

The product of 0n  and 0p  at equilibrium is a constant for a particular material and 

temperature, even if the doping is varied: 

                  // / /
0 0

gc F F v c v E kTE E kT E E kT E E kT
v v c v c vn p N e N e N N e N N e         

                // / gc i i v E kTE E kT E E kT
i i c v c vn p N e N e N N e      

 

 

 

  /
0

0

lnF vE E kT v
v F v

Np N e E E kT
p

   
     

 
 

3ln ln
2 2 2 4

pc v v c v
i i i i

c n

mE E N E EkT kTn p E E
N m





   
              
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The intrinsic electron and hole concentrations are equal (since the carriers are created in 

pairs), i in p ; thus the intrinsic concentration is 

                                             

 

Law of Mass Action 

The constant product of electron and hole concentrations can be written conveniently as                                                          

 

  

             For n-type material the minority concentration (holes)                                                              

                                                   
2 2
i i

n
n D

n np
n N

       where DN  is donor ion concentration. 

           For p-type material the minority concentration (electrons)   

                                                 
2 2
i i

p
p A

n nn
p N

          where AN  is    acceptor  ion concentration. 

 

Another convenient way of writing electron and hole concentration is 

   .     

 

This form of the equation indicates directly that the electron concentration is in  when FE  

is at the intrinsic level iE  and that 0n  increases exponentially as the Fermi level moves 

away from iE  toward the conduction band. Similarly, the hole concentration 0p  varies 

from in  to larger values as FE  moves from iE , toward the valence band. Since these 

equations reveal the qualitative features of carrier concentration so directly, they are 

particularly convenient to remember.  

 

 

 

 

 

/ 2gE kT
i c vn N N e  

2
0 0 in p n  

  /
0

F iE E kT
in n e   and   /

0
i FE E kT

ip n e   
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1.7 Temperature Dependence of Carrier Concentrations 

The variation of carrier concentration with temperature is indicated by equations 
  /

0
F iE E kT

in n e   and   /
0

i FE E kT
ip n e  . Initially, the variation of 0n  and 0p  with T  

seems relatively straightforward in these relations. The problem is complicated, however, 

by the fact that in  has strong temperature dependence  / 2gE kT
i c vn N N e  and that 

FE can also vary with temperature. Let us begin by examining the intrinsic carrier 

concentration.            
3/ 2

3/ 4 / 2* *
2

22 gE kT
i n p

kTn T m m e
h
    

 
    

The exponential temperature dependence dominates  in T  and a plot of 

 ln 1000 /in vs T appears almost linear (figure 1.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Intrinsic carrier concentration for Ge, Si, and GaAs as a function of inverse 

temperature. The room temperature values are marked for reference. 
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1.8 Compensation and Space Charge Neutrality 

Figure 1.11 illustrates a semiconductor for which both donors and acceptors are present, 

but D AN N . The predominance of donors makes the material n-type and the Fermi level 

is therefore in the upper part of the band gap. Since FE  is well above the acceptor 

level aE , this level is essentially filled with electrons. However, with FE  above iE  we 

cannot expect a hole concentration in the valence band commensurate with the acceptor 

concentration. In fact, the filling of the aE  states occurs at the expense of the donated 

conduction band electrons.  

The mechanism can be visualized as follows: Assume an acceptor state is filled with a 

valence band electron, with a hole resulting in the valence band. This hole is then filled 

by recombination with one of the conduction band electrons. Extending this logic to all 

the acceptor atoms, we expect the resultant concentration of electrons in the conduction 

band to be D AN N  instead of the total DN . This process is called compensation. By this 

process it is possible to begin with an n-type semiconductor and add acceptors until 

A DN N  and no donated electrons remain in the conduction band. In such compensated 

material 0 0in n p   and intrinsic conduction is obtained. With further acceptor doping 

the semiconductor becomes p-type with a hole concentration of essentially A DN N .  

 

 

 

 

 

 

 

 

Figure 1.11: Compensation in an n-type semiconductor  D AN N . 
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The exact relationship among the electron, hole, donor, and acceptor concentrations can 

be obtained by considering the requirements for space charge neutrality. If the material 

is to remain electrostatically neutral, the sum of the positive charges (holes and ionized 

donor atoms) must balance the sum of the negative charges (electrons and ionized 

acceptor atoms):                        

                                                         

 

Thus the net electron concentration in the conduction band is )(00
  AD NNpn  . 

If the material is doped n-type  0 0n p and all the impurities are ionized, we can 

approximate that AD NNn 0 . 

Since the intrinsic semiconductor itself is electrostatically neutral and the doping atoms 

we add are also neutral, the requirement of equation 0 0D Ap N n N     must be 

maintained at equilibrium.  

Knowledge of carrier concentrations in a solid is necessary for calculating current flow in 

the presence of electric or magnetic fields. In addition to the values of n and p, we must 

be able to take into account the collisions of the charge carriers with the lattice and with 

the impurities. These processes will affect the ease with which electrons and holes can 

flow through the crystal, that is, their mobility within the solid. As should be expected, 

these collision and scattering processes depend on temperature, which affects the thermal 

motion of the lattice atoms and the velocity of the carriers. 

 

 

 

 

 

 

 

 

0 0D Ap N n N     
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Example: The donor concentration in a sample of n -type silicon is increased by a factor 

of 100. Find the shift in the position of the Fermi level at 300K .  KatmeVTkB 30025  

Solution: 

ln c
C F

d

NE E kT
N

 
   

 
and  ln ln ln 100

100
c c

C F
d d

N NE E kT kT kT
N N

   
      

   
 

Thus shift is    ln 100 25ln 100 115.15E kT meV meV     

Example: A Si sample is doped with 1710 As  atoms/cm3. What is the equilibrium hole 

concentration 0p  at300 K ? Where is FE  relative to iE ? (where 10 31.5 10in cm  ) 

Solution:  

Since D iN n  we can approximate in  and  

2 20
3 3

0 17
0

2.25 10 2.25 10
10

inp cm
n


      

17
0

10

10ln 0.0259 ln 0.407
1.5 10F i

i

nE E kT eV
n

   


  

Example: A pure Si sample at 300K with intrinsic carrier concentration of 316 /105.1 m  

is doped with phosphorous. The equilibrium hole concentration and electron mobility is 
39 /1025.2 m   and 21350 /cm Vs  respectively. Find the position of Fermi-level relative 

to the intrinsic level at 300K .  

Solution: 

Equilibrium electron concentration is  

  323
9

2162
2 1000.1

1025.2
105.1)( 



 m

p
nnmassofLawnnp i

i  











i
BiF n

nTkEE ln eV406.0
105.1

10ln3001067.8 16

23
5 










   

 

 

 

 

FE cE

iE

vE

eV 1.1
eV 407.0
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1.9 Current Components in Semiconductor  

1.9.1 Drift Current (Conductivity and Mobility)  

The charge carriers in a solid are in constant motion, even at thermal equilibrium. At 

room temperature, for example, the thermal motion of an individual electron may be 

visualized as random scattering from lattice atoms, impurities, other electrons, and 

defects (figure 1.12). Since the scattering is random, there is no net motion of the group 

of 3 /  n electrons cm over any period of time. This is not true of an individual electron, of 

course. The probability of the electron in returning to its starting point after some time t is 

negligibly small. However, if a large number of electrons is considered (e.g. 16 310  cm in 

an n-type semiconductor), there will be no preferred direction of motion for the group of 

electrons and no net current flow.  

 

 

 

 

 

 

Figure 1.12: Thermal motion of an electron in a solid. 

If an electric field xE  is applied in the x-direction, each electron experiences a net force  

xqE  from the field. This force may be insufficient to alter appreciably the random path 

of an individual electron; the effect when averaged over all the electrons, however, is a 

net motion of the group in the x-direction. If xp  is the x-component of the total 

momentum of the group, force of the field on the 3 /  n electrons cm is 

                                            
field

x
x

dpnqE
dt

     . 
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Initially, above equation seems to indicate a continuous acceleration of the electrons in 

the x -direction. This is not the case, however, because the net acceleration is just 

balanced in steady state by the decelerations of the collision processes. Thus while the 

steady field xE  does produce a net momentum xp , the net rate of change of momentum 

when collisions are included must be zero in the case of steady state current flow.  

To find the total rate of momentum change from collisions, we must investigate the 

collision probabilities more closely. If the collisions are truly random, there will be a 

constant probability of collision at any time for each electron. Let us consider a group of 

0N  electrons at time 0t   and define  N t  as the number of electrons that have not 

undergone a collision by time t. The rate of decrease in  N t at any time t is proportional 

to the number left unscattered at t,  

      1dN t
N t

dt t
    where 1t   is a constant proportionality.   

The solution to above equation is an exponential function                               

  0

t
tN t N e

  and t  represents the mean time between scattering events, called the 

mean free time.  

The probability that any electron has a collision in the time interval dt  is dt
t

.  

Thus the differential change in p, due to collisions in time dt  is x x
dtdp p
t

  .  

The rate of change of xp , due to the decelerating effect of collisions is
collision

x xdp p
dt t

   

The sum of acceleration and deceleration effects must be zero for steady state. Thus 

          0x
x

p nqE
t

   .       
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The average momentum per electron is x
x x

pp qt E
n

     where the angular brackets 

indicate an average over the entire group of electrons. As expected for steady state, the 

above equation indicates that the electrons have on the average a constant net velocity in 

the negative x-direction:      * *
x

x x
n n

p qtv E
m m

    

Actually, the individual electrons move in many directions by thermal motion during a 

given time period, but xv  tells us the net drift of an average electron in response to the 

electric field. The drift speed xv  is usually much smaller than the random speed due to 

thermal motion thv . 

The current density resulting from this net drift is just the number of electrons crossing 

a unit area per unit time  xn v multiplied by the charge on the electron  q : 

                  
2

2
* /x x x
n

nq tJ qn v E ampere cm
m

   . 

Thus the current density is proportional to the electric field, as we expect from Ohm's law:                          

x xJ E    where
2

*
n

nq t
m

  .     

The conductivity   1cm 
  can be written                            where *n

n

qt
m

  .   

The quantity n , called the electron mobility, describes the ease with which electrons 

drift in the material. Mobility is a very important quantity in characterizing 

semiconductor materials and in device development. 

The mobility can be expressed as the average particle drift velocity per unit electric field.  

Thus x
n

x

v
E

   , and units of mobility are 2( / ) /( / )  / -cm s V cm cm V s . The minus sign 

in the definition results in a positive value of mobility, since electrons drift opposite to 

the field. 

 

nqn   
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The current density can be written in terms of mobility as x n xJ qn E .    

This derivation has been based on the assumption that the current is carried primarily by 

electrons. For hole conduction we change n  to p , q  to q , n  to p  

                                     where x
p

x

v
E

    is the mobility for holes. 

 If both electrons and holes participate, then 

          where                                                  . 

            

 For N-type semiconductor 

  sincen n n n p n n n ne n p n e n p        where n nn and p   are electron and hole 

concentration in N-type. 

           For P-type semiconductor 

  sincep p n p p p p p pe n p p e p n        where p pn and p   are electron and hole 

concentration in P-type. 

Example: The following data are given for intrinsic Germanium at 300 K . 

19 32.4 10 /in m  , 2 1 10.39e m V s   , 2 1 10.19p m V s   . Find the conductivity of the 

Germanium.  

Solution:       11919 227.219.39.0104.2106.1   men pni  . 

Example: A sample of Si has electron and hole mobilities of 0.13  and 2 1 10.05 m V s   

respectively at 300K. It is doped with P and Al with doping densities of 321 /105.1 m  

and 321 /105.2 m  respectively. The resistivity of doped Si sample at 300K is  

(a) m125.0              (b) m0.8                (c) m125.2             (d) m225.0  

Solution: 

Resulting doped crystal is p-type and   321321 /101/105.15.2 mmp p   

  05.0101106.1 2119  
ppppnp eppne  118  m  

m 125.0
8
11


  

 n pq n p   
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1.9.2 Diffusion Current  

In addition to a conduction current, the transport of charges in a semiconductor may be 

accounted for a mechanism called diffusion. It is possible to have non-uniform 

concentration of particles in a semiconductor. As indicated in the figure 1.13, the 

concentration p  of holes varies with distance x   in the semiconductor, and there exist a  

concentration gradient, dp
dx

  in the density of the carriers.  

 

 

 

 

 

 

 

 

Note: It should be noted that this net transport of charge is not the result of mutual 

repulsion among charges of like sign, but is simply the result of a statistical phenomenon. 

This diffusion is exactly analogous to that which occurs in a neutral gas if concentration 

gradient exists in the gaseous container.  

The diffusion hole-current density pJ  (ampere per square meter) is proportional to the 

concentration gradient, and is given by: p p
dpJ qD
dx

     

where pD (Square meters/second) is called diffusion constant. Since p  decreases with 

increasing x , then dp
dx

 is negative and the minus sign needed, so that pJ  is positive in the 

positive x -direction.  

Similarly, n n
dnJ qD
dx

   

 

 

The existence of a gradient implies that if an imaginary 

surface is drawn in the semiconductor, the density of 

the holes immediately on one side of the surface is 

larger than the density on the other side.  The holes are 

in random motion as a result of their thermal energy. 

Accordingly, holes will continue to move back and 

forth across this surface. We may then expect that, in a 

given time interval, more holes will cross the surface 
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1.9.3 Einstein Relationship 

Since both diffusion and mobility are statistical thermodynamic phenomena, D and  are 

not independent. The relationship between them is given by  

           p n
T

p n

D D V
 

    where TV  is the ‘Volt-equivalent of temperature’.  

 
11,600T

kT TV V
q

   

k  Boltzmann constant in electron volts per degree Kelvin  

At room temperature 0300T K , 0.026TV V  39D    

1.9.4 Total Current in a Semiconductor 

 It is possible for both a potential gradient and a concentration gradient to exist 

simultaneously within a semiconductor. In such a situation, the total hole current is the 

sum of the drift current and the diffusion current, 
dx
dpqDpEqJ ppp    

Similarly the net electron current is:
dx
dnqDnEqJ nnn    

1.10 Effects of Temperature and Doping on Mobility 

The two basic types of scattering mechanisms that influence electron and hole mobility 

are lattice scattering and impurity scattering. In lattice scattering a carrier moving 

through the crystal is scattered by a vibration of the lattice, resulting from the temperature 

(Collective vibrations of atoms in the crystal are called phonons. Thus lattice scattering is 

also known as phonon scattering). The frequency of such scattering events increases as 

the temperature increases, since the thermal agitation of the lattice becomes greater. 

Therefore, we should expect the mobility to decrease as the sample is heated. On the 

other hand, scattering from crystal defects such as ionized impurities becomes the 

dominant mechanism at low temperatures. Since the atoms of the cooler lattice are less 

agitated, lattice scattering is less important; however, the thermal motion of the carriers is 

also slower. 
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Figure 1.14: Approximate temperature dependence of mobility with both lattice and 

impurity scattering. 

Since a slowly moving carrier is likely to be scattered more strongly by an interaction 

with a charged ion than is a carrier with greater momentum, impurity scattering events 

cause a decrease in mobility with decreasing temperature. The approximate temperature 

dependencies are 3/ 2T   for lattice scattering and 3/ 2T  for impurity scattering.  
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1. 11 The Potential Variation within a Graded Semiconductor  

 

 

 

 

 

               

Figure 1.15 (a):  A graded semiconductor: p(x) is not constant 

(b): One portion is doped with (uniformly) acceptor ions and the other section is doped 

uniformly with donor ions so that a metallurgical junction is formed. 

                                                            Consider a semiconductor where the hole 

concentration p is a function of x; that is, the doping is non-uniform or graded. Assume a 

steady-state situation and zero excitation; that is, no carriers are injected into the 

specimen from any external source. With no excitation there can be no steady movement 

of charge in the bar, although the carriers possess random motion due to thermal agitation. 

Hence the total hole current must be zero (also, the total electron current must be zero). 

Since p is not constant, we expect a non-zero hole diffusion current. In order for the total 

hole current to vanish there must exist a hole drift current which is equal and opposite to 

the diffusion current. However, conduction current requires an electric field and hence we 

conclude that, as a result of the non-uniform doping, an electric field is generated within 

the semiconductor. We shall now find this field and the corresponding potential variation 

throughout the bar.  

Since p p p
dpJ q pE qD
dx

  TV dpE
p dx

         0pJ   and then use p p TD V  

If the doping concentration  p x  is known, this equation allows the built in field  E x to 

be calculated.  

dVE
dx

   T
dpdV V
p

   . 

 1p 2p

1V 2V

1x 2x

 

2x1x

DNAN

0V

type-p
Junction

type-n

)(a )(b
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If this equation is integrated between 1x , where the concentration is 1p  and the potential 

is 1V  and 2x  where 2pp   and 2V V , the result is: 
2

1
1212 ln

p
pVVVV T  

Note: The potential difference between two points depends only upon the concentration 

at these points and is independent of their separation  2 1x x . 

Above equation can be put in the form TVVepp /
21

12  

This is the Boltzmann relationship of kinetic gas theory.  

Starting with 0nJ  and proceeding as above, the Boltzmann equation for electrons is 

obtained as TVVenn /
21

12 .  Now   2211 pnpn   . 

This equation states that the product np is a constant independent of x , and hence the 

amount of doping, under thermal equilibrium.  

For an intrinsic semiconductor inpn   and hence  2
innp   . 

1.11.1 An Open-Circuited Step-graded Junction 

Consider the special case indicated in figure 1.15 (b). The left half of the bar is p-type 

with a constant concentration AN , whereas the right-half is n-type with a uniform 

density DN . The dashed plane is a metallurgical  p n junction separating the two 

sections with different concentrations. This type of doping where the density changes 

abruptly from p to n type is called step-grading. The step graded junction is located at the 

plane where the concentration is zero. The above theory indicates that there is built-in 

potential between these two sections (called the contact difference of potential oV .)  

Thus 
o

o

n

p
To p

p
VVV ln12   

Because 
oppp 1 = thermal-equilibrium hole concentration in p-side 

 
onpp 2 = thermal equilibrium hole concentration in n-side  

since Ap Np
o
  and 

D

i
n N

np
o

2
     

 

2ln A D
o T

i

N NV V
n

  
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Summary 

1. In a semiconductor two types of mobile charge carriers are available. The bipolar 

nature of a semiconductor is to be contrasted with the unipolar property of a metal, which 

possesses only free electrons.  

2. A semiconductor may be fabricated with donor (acceptor) impurities. So it contains 

mobile charges which are primarily electrons (holes).  

3. The intrinsic carrier concentration is a function of temperature. At room temperature, 

essentially all donors or acceptors are ionized.  

4. Current is due to two distinct phenomenons:  

(a) Carriers drift in an electric field (this conduction current is also available in metals).  

(b) Carriers diffuse if a concentration gradient exists (a phenomenon, which does not take 

place in metals).  

5. Carriers are continuously being generated (due to thermal creation of hole-electron 

pairs) and are simultaneously disappearing (due to recombination).  

6. The fundamental law governing the flow of charges is called the continuity equation. It 

is formulated by considering that charges can neither be created nor destroyed if 

generation, recombination, drift and diffusion are all taken into account.  

7. If the minority carriers are injected into a region containing majority carriers, then 

usually the injected minority concentration is very small compared with the density of the 

majority carries. For this low-level injection condition the minority current is 

predominantly due to diffusion; in other words, the minority drift current may be 

neglected.  

8. The total majority-carrier flow is the sum of a drift and diffusion current. The majority 

conduction current results from a small electric field internally created within the 

semiconductor because of the injected carriers.  

9. The minority-carrier concentration injected into one end of a semiconductor bar 

decreases exponentially with distance into the specimen (as a result of diffusion and 

recombination).  

10. Across an open-circuited p-n junction there exists a contact difference of potential.  
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Multiple Choice Questions (MCQ) 
 

Q1. Consider the following statements: Electrical conductivity of a metal has negative 

temperature coefficient since  

1. Electron concentration increases with temperature  

2. Electron mobility decreases with temperature  

3. Electron lattice scattering increases with temperature.  

Which of the following statements given above correct?  

(a) 1, 2, 3  (b) only 1 and 2 (c) only 2 and 3 (d) only 1 and 3  

 

Q2. A piece of copper and a piece of germanium are cooled from room temperature to  

           100 K .  Then which one of the following is correct?  

(a) Resistance of each will increase  

(b) Resistance of each will decrease  

(c) Resistance of copper will increase while that of germanium will decrease.  

(d) Resistance of copper will decrease while that of germanium will increase. 

 

Q3. The probability of electrons to be found in the conduction band of an intrinsic 

semiconductor at a finite temperature  

(a) Increases exponentially with increasing band gap.  

(b) Decreases exponentially with increasing band gap.  

(c) Decreases with increasing temperature.  

(d) is independent of the temperature and the band gap.  

 

Q4. Pure silicon at 300 K  has equal electron and hole concentration of 16 32 10 m .    It 

is doped by by indium to the extent one part in 710  silicon atom. If the density of silicon 

is 2 394 10 m , then the electron concentration in the doped silicon is 

(a) 5 310 m                   (b) 7 310 m               (c) 9 310 m                    (d) 0 3110 m   
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Q5. Two pure specimen of a semiconductor material are taken. One is doped with    

8 3110 cm  numbers of donors and the other is doped with 6 3110 cm numbers of acceptors. 

The minority carrier density in the first specimen is 7 310 cm . What is the minority carrier 

density in the other specimen?  

(a) 6 3110 cm    (b) 7 3210 cm    (c) 8 3110 cm    (d) 9 310 cm   

 

Q6. The donor concentration in a sample of n -type silicon is increased by a factor         

of 100. The shift in the position of the Fermi level at 300 K , assuming the sample to non 

degenerate is  25 at 300Bk T meV K  

(a) 105 meV   (b) 110 meV   (c) 115 meV   (d) 120 meV  

 

Q7. A sample of Si  has electron and hole mobility’s of 0.13  and 2 1 10.05 m V s   

respectively at 300 K . It is doped with P and Al  with doping densities of 321 /105.1 m  

and 321 /105.2 m  respectively. The conductivity of doped Si  sample at 300 K  is  

(a) 118  m              (b) 1132  m                (c) 118.20  m             (d) 112.83  m  

 

Q8. A sample of Si  has electron and hole mobility’s of 0.13  and 2 1 10.05 m V s   

respectively at 300 K . It is doped with P and Al  with doping densities of 321 /105.2 m  

and 321 /105.1 m   respectively. The conductivity of doped Si  sample at 300 K  is  

 (a) 118  m              (b) 1132  m                (c) 118.20  m             (d) 112.83  m  

 

Q9. Mobility of electrons as well as holes for intrinsic germanium is given by         

2 /39 se00 cm Vc   and 2 /19 se00 cm Vc   with intrinsic concentration 13 32.5 10 cm . 

Then the intrinsic resistivity of the material is  

(a) 43 mc    (b) 64 mc   (c) 86 mc   (d) 131 mc  
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Q10. Consider an extrinsic semiconductor with intrinsic concentration of in . If p  and 

n are mobility of holes and electron then the electron concentration at which 

semiconductor have minimum conductivity and min  are 

 (a) ,i p n i p nn n e                 (b) / , 2i p n i p nn n e     

(c) / , /i n p i n pn n e                (d) / , 2 /i n p i n pn n e     

Q11. The Fermi-level in an n-type and p-type semiconductor material is expressed as 

(where ,D AN N  are donor and acceptor ion concentration and ,C VN N  are effective 

density of states in conduction and valance band) 

(a) ln , lnD A
C V

C V

N NE kT E kT
N N

   
    

   
 (b) ln , lnD A

C V
C V

N NE kT E kT
N N

   
    

   
  

(c) ln , lnD A
C V

C V

N NE kT E kT
N N

   
    

   
 (d) ln , lnD A

C V
C V

N NE kT E kT
N N

   
    

   
  

Q12. In an n-type semiconductor the minority hole concentration is np  and intrinsic 

carrier concentration is in . If the effective density of state in conduction band is cn  at 

temperature 0T K . Then relative position of the Fermi-level with respect to level  cE   is 

(a) 2ln c

i n

nKT
n p

    (b) 
2

ln i c

n

n nKT
p
  

(c) 2ln n c

i

p nKT
n
     (d) 

2
ln i

n c

nKT
p n

 

Q13. A Si  sample  1 301.5 10in mc   is doped with 17 310 /As atoms cm . Then  

relative position of Fermi-level  FE with respect to intrinsic level  iE  is 

(a) 0.12 eV   (b) 0.14 eV        (c) 0.16 eV   (d) 0.41 eV  
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Q14. In an n-type semiconductor, the Fermi level is 0.24 eV  below the conduction        

band at room temperature of300 K . If the temperature is increased to 350 K , then the 

new position of the Fermi-level is (Assume effective density of states to         be 

independent of temperature): 

(a) 0.28 eV      (b) 0.38 eV           (c) 0.48 eV            (d) 0.58 eV  

Q15. A p -type semiconductor (acceptor ion concentration is AN ) is doped with donor 

ion (concentration is DN ) and D AN N . If the intrinsic concentration is in , then the 

concentration of minority carrier in the doped specimen will be: 

(a) 
2
i

D

n
N

                     (b) 
2
i

A

n
N

                 (c) 
 

2
i

D A

n
N N

                   (d) 
 

2
i

A D

n
N N

 

Numerical Answer Type  Questions (NAT) 
 

Q16. Pure silicon at 300 K  has equal electron and hole concentration of 16 31.5 10 m . 

Doping by indium increases hole concentration to 22 34.5 10 m . Then the electron 

concentration in the doped silicon is……….. 3910 m   

(a) 5 39 10 m   (b) 9 35 10 m   (c) 5 39 10 m    (d) 9 35 10 m    

 

Q17. A pure Si sample at 300 K  with intrinsic carrier concentration of 316 /105.1 m  is 

doped with phosphorous. The equilibrium hole concentration and electron mobility is 
39 /1025.2 m   and 21350 /cm Vs  respectively. Then the Position of Fermi-level relative 

to the intrinsic level at 300 K  is .........eV   

 

Q18. A sample of Si  has electron and hole mobility’s of 0.13  and 2 1 10.05 m V s   

respectively at 300 K . It is doped with P and Al  with doping densities of 321 /105.2 m  

and 321 /105.1 m   respectively.  The resistivity of doped Si  sample at 300 K  

is ........... m   
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Q19. The following data are given for intrinsic Germanium at 300 K . 19 32.4 10 /in m  , 

2 1 10.39e m V s   , 2 1 10.19p m V s   . The resistivity of the Germanium will turn out to 

be ........... m  

Q20. A semiconductor has following parameters 27500 /n cm Vs  , 2300 /p cm Vs   

and 1 323.6 10in mc   . When the conductivity is minimum, the hole concentration is 

3 31....... 10 cm  

Multiple Select Type Questions (MSQ) 
Q21. Which of the following are true regarding Fermi-Dirac distribution function   

                                               /
1( )

1 FE E kTf E
e 




 

(a) An energy state at the Fermi level has a probability of 1/ 2  of being occupied by an 

electron.  

(b) At 0 K , every available energy state up to FE  is filled with electrons, and all states 

above FE  are empty.  

(c) At temperatures higher than 0 K , there is some probability ( )f E  that states above FE  

are filled and there is a corresponding probability  1 ( )f E  that states below FE  are 

empty.  

(d) The Fermi function is unsymmetrical about FE  for all temperatures.  

 

Q22. Which of the following statement are true regarding semiconductors?  

(a) An n -type semiconductor behaves as an intrinsic semiconductor at very high 

temperature.  

(b) The breaking of the covalent bonds becomes a significant phenomenon at high 

temperatures.  

(c) The carriers mobility increases with increase of temperature.  

(d) The carriers mobility decreases with increase of temperature.  
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Q23. Which one of the following are true?  

(a) Metals have positive temperature coefficient of resistance.  

(b) Semiconductors have negative temperature coefficient of resistance.  

(c) Conductivity of metals decreases with increase in temperature.  

(d) Conductivity of semiconductor decreases with increase in temperature.  

 

Q24. Which one of the following are not true?  

(a) The diffusion constants nD  and pD  for electrons and holes respectively are related    

 to their mobility by Einstein equation 
p n

p n

D D kT
e 

   

(b) The expression 2. in p n  is valid for semiconductors at all temperature.  

(c)  
3

2 exp
2

g
i

E
n T AT

kT
 

  
 

 , correctly describe the temperature (T) variation of the 

intrinsic carrier density of a semiconductor 

(d) Gallium Arsenide  GaAs  is an indirect band gap semiconductor with                  

1.43gE eV  at room temperature 

 

Q25. Which of the following are true?  

(a) Si  and Ge  are indirect band gap semiconductor. 

(b) At 0300 K  the band gap energies of Si  and Ge  are1.1eV and 0.72eV .  

(b) At 00 K  the band gap energies of Si  and Ge  are 1.1eV and 0.72eV .  

(d) At 0300 K  mobility    and diffusion constant  D is related by 39D  .  
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Solution 

MCQ 

            Ans.1:  (c) 

            Ans.2:  (d) 

            Ans.3:  (b) 

Ans.4:  (d)   

Acceptor ion concentration
29

7

3
224 10 4 10

10
A

mN p m


     

According to Law of Mass Action, 2. in p n  

   
 

16 16
10 3

22

2 10 2 10.. . 10
4 10

n pn p n p n m
p


  

      
 

 

Ans.5:  (d)  

According to law of mass action,  

18 7
91 1

1 1 2 2 2 162

3. 10 10. . 10
10

n pn p n p n
p

mc 
       

Ans.6: (c) 

ln c
C F

d

NE E kT
N

 
   

 
and  ln ln ln 100

100
c c

C F
d d

N NE E kT kT kT
N N

   
      

   
 

Thus shift is    ln 100 25ln 100 115.15E kT meV meV     

Ans.7: (a) 

Resulting doped crystal is p-type and   321321 /101/105.15.2 mmp p   

  05.0101106.1 2119  
ppppnp eppne  118  m  

Ans.8: (c) 

Resulting doped crystal is n-type and   321321 /101/105.15.2 mmnn   

  13.0101106.1 2119  
nnpnnn enpne  118.20  m  
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Ans.9:  (a)             

   13 -19

1 1 1 43
2.5 x 10 1.6 x 10 5800i

i i e h

cm
n e


  

    
  

 

Ans.10:   (b) 

 
2

Conductivity i
n p n p

ne n p e n
n

    
 

     
 

   

For minimum conductivity, 0 /i p n
d n n
dn
      

minThus 2 i p nn e    

Ans.11:  (c)    

Ans.12:   (c)    

 / lnc FE E kT c
n c c F

n

Nn N e E E kT
n

   
     

 
 and 2.n n in p n  

Ans.13: (d) 

 
2 20

3 3
17

2.25 10 2.25 10 ln 0.407
10

i n
n F i

n i

n np cm E E kT eV
n n


         

Ans.14:   (a) 

'ln 0.24 300 ln and 350 lnC C C
C F C F

D D D

N N NE E kT k E E k
N N N

       

' 0.28C FE E eV    

Ans.15: (c) 
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NAT 

Ans.16:  5   

According to Law of Mass Action, 2. in p n  

   
 

16 16
9 3

22

1.5 10 1.5 10.. . 5 10
4.5 10

n pn p n p n m
p


  

       
 

 

Ans.17: 0.41 
Equilibrium electron concentration is  

  323
9

2162
2 1000.1

1025.2
105.1)( 



 m

p
nnmassofLawnnp i

i  











i
BiF n

nTkEE ln eV406.0
105.1

10ln3001067.8 16

23
5 










   

Ans.18:   0.05 

Resulting doped crystal is n-type and   321321 /101/105.15.2 mmnn   

  13.0101106.1 2119  
nnpnnn enpne  118.20  m

m 048.0
8.20

11


  

Ans.19:   0.45 

      11919 227.219.39.0104.2106.1   men pni   

m 449.0
227.2
11


  

Ans.20:   2    
12 12 13 3/ 3.6 10 7500 / 300 18 10 2 10i n pp n cm          

MSQ 

Ans.21:  (a), (b) and (c) 

            Ans.22: (a), (b) and (d) 

            Ans.23:  (a), (b) and (c) 

Ans.24:  (a), (b) and (c) 

Ans.25:  (a), (c) and (d)  
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